Namias' fractional Fourier transforms on L2 and applications to differential equations
نویسندگان
چکیده
منابع مشابه
Fractional Complex Transforms for Fractional Differential Equations
The aim of this paper is by using the fractional complex transform and the optimal homotopy analysis by method (OHAM) to find the analytical approximate solutions for nonlinear partial fractional differential Zakharov-Kuznetsov equation. Fractional complex transformation is proposed to convert nonlinear partial fractional differential Zakharov-Kuznetsov equation to nonlinear partial differentia...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملSelf Fourier functions and fractional Fourier transforms
It was shown [ 21 that any SFF can be decomposed in this manner. Thus, F(x) is an SFF if, and only if, it can be expressed as the sum of four functions in the form of the above equation. Additional SFF studies are reported in refs. [ 3-51. Another issue that has been recently investigated is the fractional Fourier transform [ 6-91. Two distinct definitions of the fractional Fourier transform ha...
متن کاملApplications of Fractional Differential Equations
By considering different definitions of fractional derevatives, we study some kind of fractional differential equations and also give some of there applications.
متن کاملFractional cosine and sine transforms in relation to the fractional Fourier and Hartley transforms
The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing, and to the fractional Hartley transform – are introduced and their main properties and possible applications as elementary fractional transforms of causal signals are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1988
ISSN: 0022-247X
DOI: 10.1016/0022-247x(88)90094-7